miércoles, 16 de diciembre de 2015

Derivadas de orden superior

Sea f(x) una función diferenciable, entonces se dice que f '(x) es la primera derivada de f(x). Puede resultar f '(x) ser una función derivable, entonces podriamos encontrar su segunda derivada, es decir f(x). Mientras las derivadas cumplan ser funciones continuas y que sean derivables podemos encontrar la n-ésima derivada. A estas derivadas se les conoce como derivadas de orden superior.

Ejemplo 


Regla l ́hôpital

En matemáticas más específicamente en el calculo diferencial la regla de l'Hôpital o regla de l'Hôpital-Bernoulli1 es una regla que usa derivadas para ayudar a evaluar limite de funciones que estén en forma indeterminada.
Sean f y g dos funciones continuas definidas en el intervalo [a,b], derivables en (a,b) y sea c perteneciente a (a,b) tal que f(c)=g(c)=0 y g'(x)≠0 si x≠c.
Si existe el límite L de f'/g' en c, entonces existe el límite de f/g (en c) y es igual a L. Por lo tanto.




Derivaciones implicitas


Funciones implícitas 

Una correspondencia o una función está definida en forma implícita cuando no aparece despejada la y sino que la relación entre x e y viene dada por una ecuación de dos incógnitas cuyo segundo miembro es cero.

Derivadas de funciones implícitas

Para hallar la derivada en forma implícita no es necesario despejar y. Basta derivar miembro a miembro, utilizando las reglas vistas hasta ahora y teniendo presente que:
x'=1.
En general y'≠1.
Por lo que omitiremos x' y dejaremos y'.


No hay comentarios:

Publicar un comentario