lunes, 5 de octubre de 2015

UNIDAD DOS

Función matemática

En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de un círculo es función de su radio r: el valor del área es proporcional al cuadrado del radio, A = π·r2. Del mismo modo, la duración T de un viaje de tren entre dos ciudades separadas por una distancia d de 150 km depende de la velocidad v a la que este se desplace: la duración es inversamente proporcional a la velocidad, d / v. A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la cantidad de la que depende (el radio, la velocidad) es la variable independiente.
En análisis matemático, el concepto general de funciónaplicación o mapeo se refiere a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto (correspondencia matemática). Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
... −2 → +4, −1 → +1, ±0 → ±0, 
+1 → +1, +2 → +4, +3 → +9, ... 

Representación de funciones

Para representarla calcularemos aquellos puntos o intervalos donde la función tiene un comportamiento especial, que determinaremos mediante el estudio de los siguientes apartados:

1.    Dominio de la función.

2.    Simetría

3.    Periodicidad

4.    Puntos de corte con los ejes.

5.    Asíntotas

6.    Ramas parabólicas

7.    Crecimiento y Decrecimiento

8.    Máximos y mínimos

9.    Concavidad y convexidad

10.   Puntos de inflexión

Ejemplo de representación de una función

Dominio, simetría y puntos de corte

Dominio

Dominio

Simetría

Dominio, simetría y puntos de corte
Simetría respecto al origen, es decir, la función es impar

Puntos de corte

Punto de corte con OX:
Dominio, simetría y puntos de corte
Punto de corte con OY:
Punto de corte con el eje Y

Asíntotas

Asíntota horizontal
Asíntotas
No tiene asíntotas verticales ni oblicuas

Crecimiento y decrecimiento

Monotonía y extremos
Monotonía y extremos
Monotonía y extremos
Monotonía y extremos

Máximos y mínimos

Candidatos a extremos: x = − 1 y x = 1.
Segunda derivada
Minimo
Monotonía y extremos
Maximo
Monotonía y extremos

Concavidad y convexidad

Curvatura y puntos de inflexión
Curvatura y puntos de inflexión
Curvatura y puntos de inflexión
Curvatura y puntos de inflexión

Puntos de inflexión

Curvatura y puntos de inflexión

Representación gráfica

Representación

RELACIÓN ENTRE CONJUNTOS








Tipos de funciones


Clasificación


1. Funciones algebraicas

En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:

Funciones explícitas

Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2

Funciones implícitas

Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0

1.1 Funciones polinómicas

Son las funciones que vienen definidas por un polinomio.
f(x) = a+ a1x + a2x² + a2x³ +··· + anxn
Su dominio es R, es decir, cualquier número real tiene imagen.

1.1.1 Funciones constantes

El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.

1.1.2 Funciones polinómica de primer grado

f(x) = mx + n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Son funciones de este tipo las siguientes:
Función afín.
Función lineal.
Función identidad.

1.1.3 Funciones cuadráticas

f(x) = ax² + bx + c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

1.2 Funciones racionales

El criterio viene dado por un cociente entre polinomios:
Función racional
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.

1.3 Funciones radicales

El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

1.4 Funciones algebraicas a trozos

Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones en valor absoluto.
Función parte entera de x.
Función mantisa.
Función signo.

2. Funciones trascendentes

La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

2.1 Funciones exponenciales

función
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ase llamafunción exponencial de base a y exponente x.

2.2 Funciones logarítmicas
La función logarítmica en base a es la función inversa de la exponencial en base a.
función
función

2.3 Funciones trigonométricas

Función seno

f(x) = sen x

Función coseno

f(x) = cos x

Función tangente

f(x) = tg x

Función cosecante

f(x) = cosec x

Función secante

f(x) = sec x

Función cotangente

f(x) = cotg x

No hay comentarios:

Publicar un comentario